Average correlation clustering algorithm (ACCA) for grouping of co-regulated genes with similar pattern of variation in their expression values

نویسندگان

  • Anindya Bhattacharya
  • Rajat K. De
چکیده

Distance based clustering algorithms can group genes that show similar expression values under multiple experimental conditions. They are unable to identify a group of genes that have similar pattern of variation in their expression values. Previously we developed an algorithm called divisive correlation clustering algorithm (DCCA) to tackle this situation, which is based on the concept of correlation clustering. But this algorithm may also fail for certain cases. In order to overcome these situations, we propose a new clustering algorithm, called average correlation clustering algorithm (ACCA), which is able to produce better clustering solution than that produced by some others. ACCA is able to find groups of genes having more common transcription factors and similar pattern of variation in their expression values. Moreover, ACCA is more efficient than DCCA with respect to the time of execution. Like DCCA, we use the concept of correlation clustering concept introduced by Bansal et al. ACCA uses the correlation matrix in such a way that all genes in a cluster have the highest average correlation values with the genes in that cluster. We have applied ACCA and some well-known conventional methods including DCCA to two artificial and nine gene expression datasets, and compared the performance of the algorithms. The clustering results of ACCA are found to be more significantly relevant to the biological annotations than those of the other methods. Analysis of the results show the superiority of ACCA over some others in determining a group of genes having more common transcription factors and with similar pattern of variation in their expression profiles. Availability of the software: The software has been developed using C and Visual Basic languages, and can be executed on the Microsoft Windows platforms. The software may be downloaded as a zip file from http://www.isical.ac.in/~rajat. Then it needs to be installed. Two word files (included in the zip file) need to be consulted before installation and execution of the software.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divisive Correlation Clustering Algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles

MOTIVATION Cluster analysis (of gene-expression data) is a useful tool for identifying biologically relevant groups of genes that show similar expression patterns under multiple experimental conditions. Various methods have been proposed for clustering gene-expression data. However most of these algorithms have several shortcomings for gene-expression data clustering. In the present article, we...

متن کامل

Grouping Objects to Homogeneous Classes Satisfying Requisite Mass

Grouping datasets plays an important role in many scientific researches. Depending on data features and applications, different constrains are imposed on groups, while having groups with similar members is always a main criterion. In this paper, we propose an algorithm for grouping the objects with random labels, nominal features having too many nominal attributes. In addition, the size constra...

متن کامل

P-88: Expression Pattern of Maturation Genes During In Vitro Culture of Alginate Encapsulated Preantral Follicles Derived From Frozen-Thawed Mouse Ovaries

Background: This study was set up to evaluate the effect of ovarian tissue slow freezing on in vitro growth and pattern of maturation genes expression in mouse preantral follicles encapsulated within alginate hydrogel. Materials and Methods: Ovaries of 12-14 days old female NMRI mice were randomly allocated into control and slow freezing groups. In slow freezing group, ovaries were equilibrated...

متن کامل

Clustering of a Number of Genes Affecting in Milk Production using Information Theory and Mutual Information

Information theory is a branch of mathematics. Information theory is used in genetic and bioinformatics analyses and can be used for many analyses related to the biological structures and sequences. Bio-computational grouping of genes facilitates genetic analysis, sequencing and structural-based analyses. In this study, after retrieving gene and exon DNA sequences affecting milk yield in dairy ...

متن کامل

Clustering of Time-Course Gene Expression Data

Microarray experiments have been used to measure genes’ expression levels under different cellular conditions or along certain time course. Initial attempts to interpret these data begin with grouping genes according to similarity in their expression profiles. The widely adopted clustering techniques for gene expression data include hierarchical clustering, self-organizing maps, and K-means clu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical informatics

دوره 43 4  شماره 

صفحات  -

تاریخ انتشار 2010